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dynamical generation of a superconducting gap 
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38071, 22453 Rio de Janeiro RJ, Brazil 
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Abstract. We present, for N = 2, an exact operator solution for the O ( N )  symmetric 
Thirring model and show that it undergoes dynamical generation of a superconducting 
gap. 

1. Introduction 

One of the nice features of quantum field theories formulated in two-dimensional 
spacetime is the fact that many of them may be exactly solved [l]. One is thereby 
allowed to have non-trivial information about the effective dynamical behaviour and 
actual physical content of the theory. In recent years, the discovery of many applica- 
tions of two-dimensional field theory models in realistic systems of condensed matter 
physics, on the other hand, showed that these theories were more than just toy models 
or theoretical laboratories, but genuine theories, capable of making experimental pre- 
dictions [2]. The combination of these two aspects enhances the interest in the study 
of models which are potentialy relevant from the application point of view and which 
may be exactly solved. 

In a recent publication, the O ( N )  symmetric Thirring model containing N species 
(colours) of fermions wa, a = 1,2,. . . N, was analysed [3]. The Lagrangian density of 
this model is given by 

which can be written in terms of the Dirac components as 

where sum over a, b is understood, J,”b = vu p’ Yb, a, = a, k 8,. It was shown that, in 
the large-N limit, this theory presented dynamical generation of a superconducting gap 
[3]. I t  was conjectured also [3], that this mechanism was exact for all values of N ,  as in 
the analogous mass generation of the chiral Gross-Neveu model [4] and that the model 
could, perhaps, be exactly solved. In a subsequent paper [ 5 ] ,  an extended version of the 
model was shown to have two phases, one presenting dynamical superconducting gap 
generation, and another presenting dynamical mass generation; the two mechanisms 
are competitive for duality reasons [5]. 
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In this paper, we consider the N = 2 case of the model described by (1.1) and 
show its equivalence with the exactly solved massive Thirring model (MTM). In [6] we 
showed that the MTM is equivalent to the superconducting Thirring model (SCTM). 

The model described by (1.1) and (1.2) is a special case of the one considered in 
[7], but this special case lies outside the condition imposed on the coupling constant 
in [7] to show integrability. 

In addition to the U( l )  and chiral U(l) symmetries, the interaction part of (1.1) 
possesses complex O,(N) invariance and the kinetic part SU(N) invariance. Since the 
intersection of these two groups is real O(N) ,  the full symmetry group is (real O(N))@ 
U(l)@ chiral U(1). After introducing an Abelian bosonisation well suited to the O(2) 
group, we show that the U( l )  and chiral U(l) symmetries decouple from the physical 
sector implying, in particular, that the physical superconducting gap operator Z will 
create uncharged U(1) ‘Cooper pairs’. We show that this physical sc gap operator 
is fermionic and therefore may not condense. The bosonic composite operator ZZ, 
however, does acquire a non-zero vacuum expectation value. The model therefore 
generates a superconducting gap without breaking the U( 1) symmetry, in agreement 
with the Coleman-Mermin-Wagner theorem [8, 91. As we will see, the spectrum 
consists of an infinite number of massive particles which are O(2) charge neutral. The 
exact solution of the model follows from the well known [9-111 connection between the 
exactly solved massive (superconducting) Thirring model and the sine-Gordon theory. 
The O(2) charge of our model appears as the U(l) charge of the massive Thirring 
model. 

2. Bosonisation of the theory 

In this section we use Abelian bosonisation to map the O(2) theory into an exactly 
soluble model, namely the massive (superconducting) Thirring model [6]. 

Let us start by introducing the fields x and 8, by 

1 1 x = - (w, + iw2) 0 = - (w, - i w A  (2.1) Jz Jz 
where 1 and 2 are O(2) indices. The fermion current is given by 

J,” = ip, y p w l ,  = jyx + 8 y e  + q,(jiype + 8 y p x )  

J;a = E / ~ ,  J l  (2.3) 
(2.2) 

where qa = 1, -1 when a = 1,2. The interacting current J:b appearing in the Lagrangian 
density (1.1) is given by (2.2) for U = b and by 

for a # b. The conserved U(l), chiral U(1) and O(2) currents are given by 

a= 1 
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a.b= I 

We introduce the Mandelstam representation for the fermion fields x and e [12] 

where 

Introducing the two independent scalar fields 

(2.8) 

(2.9) 

(2.10) 

(2.1 1)  

which satisfy canonical commutation relations at short distance, and using the point- 
splitting limit prescription we obtain the conserved currents 

(2.12) 

(2.13) 

As we will see, the field $+ is free and massless 

E P ,  2' $+ = z/, 4 + ( X )  (2.14) 

guaranteeing, therefore U( 1) and chiral U( 1) conservation at the quantum level. 
The original O(2) transformation for the yo fields, i.e. 

y ;  =-yI  cosR+v , s inR  w ; = y ,  s i n R + y 2 c o s R  (2.15) 

acts on the 1 and B fields as 

x 8' = e" e (2.16) 

which corresponds to a U( l )  charge transformation (gauge transformation of the first 
kind) implemented by the unitary operator 

%' = e-IR 

U = exp(iQQ0'2') (2.17) 

where the O(2) generator is given by 

(2.18) 
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From (2.16) we see that x and 0 have opposite U(l)  (O(2)) charges. Writing the fermion 
fields x and 8 in terms of the $* fields, we see that they factorise as 

x = W O 2  
e = W o e  

A 

(2.19) 
(2.20) 

where vo is a free massless non-canonical field with spin S = i, given by (see 2.14) 

The physical content of the theory, however, must be solely in the interacting fields f 
and 6 which are given by 

h x 
= exp (-i 75) 2 * ( X )  (2.23) 

which satisfy neither Fermi nor Bose statistics, but have spin-$. Equation (2.23) means 
that the two 'physical' interacting objects 2 and 6 are not independent and the physical 
content of the theory can be described in terms of just one of them. This property is 
the analogue for N = 2 of the larger-N feature that antiparticles are bound states of 
N - 1 particles in similar systems [13]. Using (2.22) and (2.25), the O(2) current (2.7), 
(2.13) may be written in terms o f?  fields 

One can introduce the superconducting order parameter U given by the composite 
operator 

(2.25) 
a= I 

where the notation ': ': means normal ordering with respect to the fermion field operator 
and the numbers between brackets are Dirac indices. Using the decomposition (2.19), 
(2.20) and (2.23), we find 

where 

h .A* A . m 
U = : x , I , x ( 2 , :  + .:2,1) 2;2).: = - : cos (&$-) : 

7c 
(2.27) 
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with q+ given by (2.10) (with replaced by $+) being the potential of the U ( l )  charge 
current and 5 is the physical superconducting order parameter with zero U( 1) charge. 

The Lagrangian density (1.1) can be written as 

Y = i 2 y p  d, + iG y p  d,e + 2g : 06' : (2.29) 

which, in terms of the physical operators, is given by 

(2.30) 

As anticipated, J+ is a free massless field. The fully bosonised Lagrangian density is 
then given by 

x 9  = 9; + 9- (2.31) 

where 

2g - 1  
x =  ( l i n )  (2.32) 

2': is the free $+ Lagrangian: 

9- = $ : (d,J-)* : +G : COS(&$-) : (2.33) 

and 

m2 2g/n 
= ( 2 n )  1 + 2 g / n '  

(2.34) 

The physical content of the model is given by a sine-Gordon theory with p2 = 8n. 
From (2.26) and the fact that 2 has spin-:, we see that the spin of 2 is i. The 

vacuum expectation value of 5 must, therefore, vanish since a fermionic excitation 
may not condznse. This can also be seen from (2.27) and (2.33), considering that the 
coefficient of $- in 5 is one half of the corresponding coefficient in 9-. In a Coulomb 
gas description of the sine-Gordon theory [lo, 111, this would mean the neutrality 
condition would never be attained for (Z), implying (5) = 0. The composite operator 
DO, however, has integer spin and may therefore condense. Again, in a Coulomb gas 
version of the theory one would find that iiii introduces an external charge whose 
modulus is identical to the moduli of the internal moduli (a). This implies that 
($5) # 0, which means the generation of a sc gap. 

In a model with dynamical mass generation, as for example, the SU(2) chiral 
Gross-Neveu model [4, 131, the physical mass gap operator 2 is obtained by the 
extraction of the 'decoupled massless excitation carrying the chiral U (  1) selection rule, 
i.e. 

A/. 

(2.35) 

(2.36) 

a=l 

with 
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and 

..-. m 
n ( x )  = - :cos (a $-) : 

TC 
(2.37) 

the chiral U ( l )  charge being given by 

+* A +  

Q5 = 1 4 (x)dx'. (2.38) 
- X  

In the model under consideration the physical superconducting order parameter 2 
is obtained by extracting the decoupled massless excitation carrying the U (  1) charge 
selection rule, namely 

(2.39) h a =: exp(-i&q+) g : . 

The generator of the U ( l )  transformations is given by 

Q = tj+(x)dx' 
-X 

(2.40) 

and the fact that a does not commute with Q prevents (0 I a I 0) from developing 
a non-zero value. The physical operator 2, however, commutes with Q and in this 
sense we may say that the model under consideration exhibits dynamical generation of 
a superconducting gap without the breakdown of the corresponding continuous U( 1) 
charge symmetry. It is interesting to note that in the present O(2) symmetric theory 
the physical superconducting gap and mass operators 2 and is are identical (a and TC 

are not!) and therefore do not satisfy a dual algebra as in the case of N > 2. This fact 
was already observed in [ 5 ] .  The case N = 2 is quite unique because the O ( N )  group is 
then Abelian. The bosonisation scheme used in the N > 2 cases [5] leads, when applied 
to N = 2, to a non-local O(2) current and the identification of the O(2) charge degrees 
of freedom in the final physical system is rather difficult. For N > 2 the conservation 
of the O ( N )  currents is ensured by the equation of motion [5, 141. 

3. Description in terms of a spin-; Thirring field 

It is convenient to introduce a spin-: field 6 in terms of which the physical sector of 
the model may also be described. We define it as 

whereupon 

We may relate the O(2) current, equation (2.24), with the U ( l )  current for i$ 

(3.2) 

(3.3) 
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Inserting (3 .2)  in (2.30), we may express the interacting Lagrangian (2 .3)  in terms 
of the fermion field @ as 

Y-(x) = F(x)y, PC + (m/n )  gr*:F(x)C(x) i  - ( n / 2 )  S,(x) J p ( x ) .  (3.4) 

We see that the effective dynamics of the theory, as described in terms of this field, 
contains a Thirring interaction with coupling constant g,, = - ( n / 2 )  [12, 151 and a 
mass gap. 

From the above connection with the massive Thirring model, we conclude that 
the spectrum of the O ( 2 )  model and its S-matrix in terms of the @ particles must 
coincide with those of the massive Thirring model at p2 = 8n ( g T h  = - n / 2  and 
M = ( m / 2 )  [ ( 2 g / ( n  + 2 g ) l ) .  This last relation follows from the ones between ct and M 
and a and G. Using the exact solution of the massive Thirring model at g,, = -n/2, 
which was obtained by Korepin [16], we conclude that the spectrum of our O ( 2 )  model 
consists of an infinite number of ( O ( 2 ) )  charge-neutral particles with masses 

(3 .5)  

The S-matrix for two of these neutral particles is 

(3.6) 

where On is the rapidity of the nth neutral particle. 
The charged fermions which appear in Korepin's solution at other values of p, 

become infinitely massive at p2 = 87t (g  = - n / 2 )  and, therefore, decouple. Notice that 
the neutral particles are not bound states, since (3.12) has no poles on the physical 
sheet [16] .  

Observe that the physical operator 3 is expressed in terms of @ as 35 = @{) @(?) and 
therefore the generation of the sc gap follows because (01 @;) @(2) 10) is non-vanishing 
in the massive Thirring model. The mass scale m appearing in (324, in parcular, is 
fixed by (G), which is proportional to m. 

4. Conclusion 

Using an appropriate bosonisation scheme, we have proved the equivalence of the O(2) 
symmetric Thirring model with dynamical generation of a superconducting gap to the 
exactly solved massive Thirring model at g = - n / 2 .  The spectrum contains an infinite 
number of O ( 2 )  neutral particles. 

It is interesting to note that an analogous equivalence was proved for the SU(2)  
chiral Gross-Neveu model [17]. Our model, however, is only equivalent to the O ( 2 )  
sector of the chiral Gross-Neveu model since the physical field 2 anticommutes with the 
additional SU(2) charge densities p1  = ipl y 0 w 2  +ip2yow1 and p3 = v.'IyowI -ij72y07p2, as 
may be seen from (2 .2) ,  (2.4), (2.22) and (2.23). This fact implies that the physical states 
of the system bear zero Q, and Q3 S U ( 2 )  charges. The same result may be obtained for 
the @ field, by considering the densities p1 and p3 rewritten in terms of i& accordingly. 
This observation, therefore, supports the view [18] that the Abelian bosonisation, when 
applied to the (non-Abelian) SU(2) Gross-Neveu model, just describes its O(2) sector, 
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in contradistinction to the present (Abelian) case where the description is complete. It 
would be interesting to verify whether an exact solution may be found for N > 2. 

We would like to remark that in a hypothetical application of this model to a 
realistic quasi-one-dimensional system of condensed matter, the dynamical generation 
of a superconducting gap, which we found, would become true superconductivity since, 
due to interchain coupling, the U( 1) charge would no longer decouple from the physical 
sector. 
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